Exercise 23

For the following exercises, determine the domain and range of the quadratic function.

$$
f(x)=x^{2}+6 x+4
$$

Solution

Any value of x can be plugged into a polynomial function, so the domain is

$$
\{x \mid-\infty<x<\infty\} .
$$

In order to determine the range, first write the quadratic function in vertex form by completing the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=6$, which means $B=3$ and $B^{2}=9$. Add and subtract 9 on the right side and then use the identity to make x appear in only one place rather than two.

$$
\begin{aligned}
f(x) & =x^{2}+6 x+4 \\
& =\left(x^{2}+6 x+9\right)+4-9 \\
& =(x+3)^{2}-5
\end{aligned}
$$

Because the coefficent of the squared term is positive, the parabola opens upward; in other words, the squared term takes on values between zero and infinity. The smallest value of $f(x)$ is $0-5=-5$, and the highest value of $f(x)$ is $\infty-5=\infty$.

$$
\{y \mid-5 \leq y<\infty\}
$$

